Silane Promoted Cycloisomerization of Functionalized 1,6-Dienes Catalyzed by a Cationic π -Allyl Palladium Complex

Ross A. Widenhoefer* and Nicholas S. Perch Duke University

P. M. Gross Chemical Laboratory

Durham, NC 27708-0346

Supporting Information

Experimental procedures and analytical and spectroscopic data for new compounds (5 pages).

Experimental

All reactions were performed under an atmosphere of nitrogen **General Methods.** employing standard Schlenk techniques. NMR were obtained on a General Electric QE 300 spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C in CDCl₃ unless otherwise noted. ¹³C Peak multiplicities where indicated were determined via a combination of DEPT and APT techniques. Gas chromatography was performed on a Hewlett-Packard 5890 gas chromatograph equipped with a 25 m polydimethylsiloxane capillary column. Flash chromatography was performed employing 200-400 mesh silica gel (EM) eluting with mixtures of hexane and ethyl acetate. Elemental analyses were performed by E+R Microanalytical Laboratories (Parsippany, NJ). CH₂Cl₂ and 1,2-dichloroethane (DCE) were distilled from CaH₂ under nitrogen. Dimethyl diallylmalonate (Lancaster) and triethylsilane (Aldrich) were used as received. The syntheses of the The precatalysts $(\eta^3-C_3H_5)Pd(Cl)PCy_3^2$, $(\eta^3-C_3H_5)Pd(Cl)PCy_3^2$ remaining dienes have been reported.¹ C₃H₅)Pd(Me)PCy₃,² NaBAr₄ and HBAr₄·OEt₂ [Ar = $3,5-C_6H_3(CF_3)_2$]₄ were prepared by known procedures.3

Substrates

4-Trimethylacetoxymethyl-4-phenyl-1,6-heptadiene (Table 2, entry 7). Trimethylacetyl chloride (2.5 g, 21 mmol) was added slowly to a solution of 4-hydroxymethyl-4-phenyl-1,6-heptadiene (2.0 g, 10 mmol), NEt₃ (1.6 g, 18 mmol), and dimethylaminopryridine (100 mg, 1 mmol), in CH₂Cl₂ (25 mL) at 0 °C and the resulting solution was stirred overnight at room temperature. Water (25 mL) and CH₂Cl₂ (25 mL) were added and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (3 × 25 mL) and the combined organic fractions were washed with water and brine, dried (MgSO₄), concentrated and distilled under vacuum (0.1 torr, 120 °C) to give the diene (2.1 g, 70 %) as a pale yellow oil. ¹H NMR: δ 7.28 (m, 5 H), 5.51 (tdd, *J* = 7.35, 10.5, 17.2 Hz, 2 H), 5.00 (m, 4 H), 4.29 (s, 2 H), 2.51 (d, *J* = 7.5 Hz, 4 H), 1.12 (s, 9 H). ¹³C{¹H}NMR: δ 178.0, 143.1, 133.7, 128.3, 126.5, 126.3, 118.3, 67.2, 44.2, 40.9, 38.9, 27.2, 26.6. HRMS (EI) calcd (found) for $C_{19}H_{25}O_2$: (M–H⁺): 285.1854 (285.1850). Anal. calcd (found) for $C_{19}H_{26}O_2$: H, 9.15 (9.41); C, 79.68 (79.84).

4,4-Dicarbomethoxy-3-phenyl-1,6-heptadiene (Table 2, entry 11). A suspension of dimethyl (1-phenyl)-2-propenylmalonate (374 mg, 1.5 mmol), NaH (60 % in oil, 100 mg, 2.5 mmol), and allyl bromide (0.5 g, 3.0 mmol) in THF (10 mL) was refluxed for 12 h. Water (10 mL) and ether (10 mL) were added and the layers were separated. The aqueous layer was extracted with ether (2 × 10 mL) and the combined ether fractions were washed with water and brine, dried (MgSO₄), concentrated, and chromatographed (12:1) to give the diene (305 mg, 71 %) as a colorless oil. ¹H NMR: δ 7.25 (m, 3 H), 7.12 (d, *J* = 6.62 Hz, 2 H), 6.37 (ddd, *J* = 8.6, 10.2, 17.2 Hz, 1 H), 5.74 (m, 1 H), 5.14 - 4.96 (m, 4 H), 3.99 (d, *J* = 8.5 Hz, 1 H), 3.72 (s, 3 H), 3.65 (s, 3 H), 2.57 (ddd, *J* = 1.1, 6.3, 14.1 Hz, 1 H), 2.39 (dd, *J* = 8.2, 14.1 Hz, 1 H). ¹³C{1H}NMR: δ 170.6, 170.4, 139.0, 137.8, 133.4, 129.3, 128.4, 127.3, 118.6, 117.3, 63.1, 54.6, 52.1, 52.0, 39.6. IR (neat, cm⁻¹): 3079, 3028, 2982, 2950, 1729, 1453, 1220, 1065. Anal. calcd (found) for C₁₇H₂₀O₄: H, 6.99 (6.92); C, 70.81 (70.69).

Cyclopentenes

4,4-Dicarbomethoxy-1,2-dimethylcyclopentene (Table 1, entry 1). ¹H NMR: δ 3.69 (s, 6 H), 2.92 (s, 4 H), 1.56 (s, 6 H). ¹³C{¹H}NMR: δ 172.9, 127.9, 57.0, 45.8, 13.1. IR (neat, cm⁻¹): 2954, 1731, 1434, 1257, 1199, 1078. Anal. calcd (found) for C₁₁H₁₆O₄: H, 7.60 (7.33); C, 62.26 (61.99).

4,4-Dicarbobenzyloxy-1,2-dimethylcyclopentene (Table 2, entry 2). ¹H NMR: δ 7.25 (m, 10 H), 5.10 (s, 4 H), 2.94 (s, 4 H), 1.56 (s, 6 H). ¹³C{¹H}NMR: δ 172.3, 135.8, 128.7, 128.4, 128.3, 128.1, 67.2, 57.5, 46.0, 13.5. IR (neat, cm⁻¹): 3033, 1731, 1454, 1241, 1162, 1064. Anal. calcd (found) for C₂₃H₂₄O₄: H, 6.64 (6.52); C, 75.80 (75.86).

4,4-Dicarbo-*t***-butoxy-1,2-dimethylcyclopentene** (**Table 2, entry 3**). ¹H NMR: δ 2.80 (s, 4 H), 1.56 (s, 6 H), 1.43 (s, 18 H). ¹³C{¹H}NMR: δ 172.0, 128.2, 81.0, 58.3, 45.9, 28.1, 13.6. Anal. calcd (found) for C₁₇H₂₈O₄: H, 9.53 (9.63); C, 68.87 (68.79). **4-Carbomethoxy-1,2-dimethyl-4-phenylcyclopentene** (**Table 2, entry 4**). ¹H NMR: δ 7.27 (m, 5 H), 3.62 (s, 3 H), 3.28 (dd, J = 0.7, 14.3 Hz, 2 H), 2.70 (dd, J = 0.8, 15.3 Hz, 2 H), 1.63 (s, 6 H). ¹³C{¹H}NMR: δ 177.1, 155.6, 129.4, 128.5, 126.8, 126.6, 56.7, 52.6, 48.4, 13.9. IR (neat, cm⁻¹): 3059, 2950, 2853, 1730, 1495, 1263, 1218, 1166, 1036. Anal. calcd (found) for C₁₅H₁₈O₂: H, 7.88 (8.09); C, 78.22 (78.07).

4-Acetyl-4-carbomethoxy-1,2-dimethylcyclopentene (Table 2, entry 5). ¹H NMR: δ 3.62 (s, 3 H), 2.83 (m, 4 H), 2.13 (s, 3 H), 1.56 (s, 6 H). ¹³C{¹H}NMR: δ 202.4, 173.1, 127.3, 62.9, 51.9, 43.6, 25.1, 12.6. IR (neat, cm⁻¹): 2951, 2922, 2854, 1738, 1703, 1428, 1377, 1360, 1234, 1159, 1125, 1079, 1005, 971, 931, 845. Anal. calcd (found) for C₁₁H₁₆O₃: H, 8.22 (8.00); C, 67.32 (67.34).

4-Acetoxymethyl-1,2-dimethyl-4-phenylcyclopentene (**Table 2, entry 6**). ¹H NMR: δ 7.26 (m, 5 H), 4.10 (m, 2 H), 2.72 (d, J = 14.9 Hz, 2 H), 7.25 (d, J = 14.6 Hz, 2 H), 1.94 (s, 3 H), 1.62 (s, 6 H). ¹³C{¹H}NMR: δ 170.5, 146.4, 128.4, 127.4, 126.2, 125.3, 71.0, 47.2, 47.1, 20.2, 13.1. IR (neat, cm⁻¹): 3058, 3026, 2966, 2910, 2851, 1748, 1495, 1444, 1376, 1238, 1034. Anal. calcd (found) for C₁₆H₂₀O₂: H, 8.25 (8.12); C, 78.65 (78.43).

4-Trimethylacetoxymethyl-1,2-dimethyl-4-phenylcyclopentene (**Table 2, entry 7**). ¹H NMR: δ 7.25 (m, 5 H), 4.04 (s, 2 H), 2.74 (d, J = 14.8 Hz, 2 H), 2.55 (d, J = 14.6 Hz, 2 H), 1.62 (s, 6 H), 1.07 (s, 9 H). ¹³C{¹H}NMR: δ 178.7, 147.4, 129.3, 128.2, 127.2, 126.1, 72.3, 48.2, 48.1, 39.1, 27.3, 14.0. IR (neat, cm⁻¹): 2969, 2909, 1729, 1479, 1445, 1283, 1158. Anal. calcd (found) for C₁₉H₂₆O₂: H, 9.15 (8.91); C, 79.68 (79.42).

4,4-Bis(acetoxymethyl)-1,2-dimethylcyclopentene (Table 2, entry 8). ¹H NMR: δ 3.99 (s, 2 H), 2.15 (s, 2 H), 2.04 (s, 3 H), 1.55 (s, 3 H). ¹³C{¹H}NMR: δ 170.5, 127.9, 66.7, 43.7, 42.0, 20.2, 12.9. IR (neat, cm⁻¹): 2966, 2914, 2894, 2844, 1741, 1444, 1378, 1363, 1319, 1234, 1034, 977, 912, 848. Anal. calcd (found) for C₁₃H₂₀O₄: H, 8.39 (8.67); C, 64.98 (64.96).

4,4-Bis(trimethylacetoxymethyl)-1,2-dimethylcyclopentene (Table 2, entry 9). ¹H NMR: δ 3.97 (s, 4 H), 2.17 (s, 4 H), 1.55 (s, 4 H), 1.17 (s, 18 H). ¹³C{¹H}NMR: δ 178.5, 128.8, 67.7, 44.9, 43.3, 39.1, 27.4, 13.8. IR (neat, cm⁻¹): 2971, 1730, 1396, 1282, 1148, 1034, 994, 938. Anal. calcd (found) for C₁₉H₃₂O₄: H, 9.95 (9.84); C, 70.32 (70.35).

4,4-Dicarboethoxy-1,2,3-trimethylcyclopentene (Table 2, entry 10). ¹H NMR: δ 4.18 (m, 4 H), 3.32 (q, *J* = 3.9 Hz, 1 H), 3.19 (d, *J* = 16.6 Hz, 1 H), 2.51 (d, *J* = 16.8 Hz, 1 H), 1.56 (s, 6 H), 1.22 (t, *J* = 7.1 Hz, 3 H), 1.21 (t, *J* = 7.1 Hz, 1 H), 0.91 (d, *J* = 7.1 Hz, 3 H). ¹³C{¹H}NMR: δ 172.8, 171.0, 133.4, 127.1, 62.6, 61.3, 61.2, 48.9, 44.1, 14.3, 14.2, 13.7, 12.0. IR (neat, cm⁻¹): 2975, 2934, 2873, 1720, 1445, 1300, 1105, 859. Anal. calcd (found) for C₁₄H₂₂O₄: H, 8.72 (8.93); C, 66.12 (66.31).

4,4-Dicarbomethoxy-1,2-dimethyl-3-phenylcyclopentene (Table 2, entry 11). ¹H NMR: δ 7.25 (m, 3 H), 7.10 (d, *J* = 6.8 Hz, 2 H), 4.56 (s, 1 H), 3.72 (s, 3 H), 3.28 (d, *J* = 16.8 Hz, 1 H), 3.09 (s, 3 H), 2.62 (d, *J* = 17.0 Hz, 1 H), 1.72 (s, 3 H), 1.44 (s, 3 H). ¹³C{¹H}NMR: δ 173.2, 170.3, 139.2, 132.0, 130.2, 129.4, 128.2, 127.3, 64.1, 61.8, 53.1, 44.9, 13.8, 12.8. IR (neat, cm⁻¹): 3027, 2950, 2859, 1737, 1453, 1433, 1252, 1137, 1078. HRMS (EI) calcd (found) for C₁₇H₁₉O₄ (M–H⁺): 287.1283 (287.1288).

4,4-Dicarbomethoxy-1,2,3,3-tetramethylcyclopentene (Table 2, entry 12). ¹H NMR: δ 3.67 (s, 6 H), 2.72 (s, 2 H), 1.59 (s, 3 H), 1.49 (s, 3 H), 1.05 (s, 6 H). ¹³C{¹H}NMR: δ 171.9, 136.1, 126.3, 66.4, 52.2, 52.0, 43.1, 22.4, 14.0, 9.8. IR (neat, cm⁻¹): 2952, 2861, 1733, 1456, 1248, 1087, 1042. Anal. calcd (found) for C₁₃H₂₀O₄: H, 8.39 (8.46); C, 64.98 (64.93).

4,4-Dicarbomethoxy-1-ethyl-2-methylcyclopentene (major isomer) and 1,1dicarbomethoxy-3-ethylidene-4-methylcyclopentane (minor isomer) (Table 2, entry 13). ¹H NMR [major isomer]: δ 3.84 (s, 6 H), 30.6 (br s, 4 H), 2.15 (q, *J* = 7.8 Hz, 2 H), 1.67 (s, 3 H), 1.06 (t, *J* = 7.8 Hz, 3 H). ¹H NMR [minor isomer]: Most resonances of the minor isomer were obscured by the major isomer. However a doublet (*J* = 6.4 Hz) at δ 1.02 was assigned to a methyl group of the minor isomer. ¹³C{¹H}NMR [major isomer]: δ 173.2 (s), 134.1 (s), 127.5 (s), 57.4 (s), 52.9 (q), 46.1 (t), 43.4 (t), 21.2 (t), 13.3 (q), 12.6 (q). ¹³C{¹H}NMR [minor isomer]: δ 172.7 (s), 144.0 (s), 115.3 (d), 58.5 (s), 42.7 (t), 37.4 (t), 37.3 (d), 20.6 (q), 18.1 (q), 14.6 (q). IR (neat, cm⁻¹): 2957, 2932, 2858, 1737, 1434, 1253, 1197, 1156, 1074, 957. Anal. calcd (found) for $C_{12}H_{18}O_4$: H, 8.02 (7.88); C, 63.70 (66.31).

References.

- (1) (a) Widenhoefer, R. A.; DeCarli, M. A. J. Am. Chem. Soc. 1998, 120, 3805. (b) Stengone, C.
- N.; Widenhoefer, R. A. *Tetrahedron Lett.* **1999**, *40*, 1451. (c) Perch, N. S.; Widenhoefer, R. A. *J. Am. Chem. Soc.* **1999**, *121*, 6960.
- (2) DiRenzo, G. M.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 6225.
- (3) Brookhart, M.; Grant, B.; Volpe, A. F. Organometallics 1992, 11, 3920.